

Integral University, Lucknow University Polytechnic Study and Evaluation Scheme

Program: Diploma in Civil Engineering (Construction Management & Safety)

Semester- I

S	Course		Type of	hr	Period Per /week/			Eva	luation	Scheme	Sub.		Total				Attrik			
No	code	Course Title	Paper	L	Т	P	CT	TA	Total	ESE	Tota l	Credit	Credits	Employa bility	Entrepr eneurshi p	Skill Develop ment	Gender Equality	Environment & Sustainability	Human Value	Professional Ethics
T	HEORIES																			
1	DMA-101	Applied Mathematics-I	Core	03	01	00	40	20	60	40	100	3:1:0	4	Y		Y				
2	DPH-101	Applied Physics (A)	Core	03	01	00	40	20	60	40	100	3:1:0	4	Y	Y	Y		Y		
3	DCH-101	Applied Chemistry (A)	Core	03	01	00	40	20	60	40	100	3:1:0	4	Y	Y	Y		Y		
4	DCE-101	Building Material (A)	Core	03	01	00	40	20	60	40	100	3:1:0	4	Y	Y	Y		Y		
5	DED-101	Engineering Drawing	Core	01	03	00	40	20	60	40	100	1:3:0	4	Y	Y	Y				Y
6	DAM-101	Applied Mechanics-I	Core	03	01	00	40	20	60	40	100	3:1:0	4			Y				
1	DCH-151	Applied Chemistry Lab	Core	00	00	02	40	20	60	40	100	0:0:1	1	Y	Y	Y		Y		
2	DAM-151	Applied Mechanics Lab	Core	00	00	02	40	20	60	40	100	0:0:1	1			Y				
3	DCE-151	Building Material Lab	Core	00	00	02	40	20	60	40	100	0:0:1	1	Y	Y	Y		Y		
4	DCS-151	Computer Application Lab	Core	01	00	02	40	20	60	40	100	1:0:1	2	Y	Y	Y				
5	GP-151	General Proficiency		_		_		_	60	_	60								Y	Y
			Total	17	08	08	400	200	660	400	1060		29							

Effective from Session: 2024-25											
Course Code	DMA-101	Title of the Course	APPLIED MATHEMATICS-I	L	T	P	C				
Year	IST	Semester	IST	03	01	00	-				
Pre-Requisite	DMA-101	Co-requisite	NA								
	To know the basic	concepts of Mather	matics with their Applications in Engineering.								
Course											
Objectives											

Course	Outcomes
CO1	Arithmetic Progression and Geometric Progression can be applied in real life by analyzing a certain pattern that we see in our daily life.
CO2	Trigonometry is widely used in several fields. Some of it's uses are Measuring heights and distances, in construction and architecture, flight engineering, marine biology, application of Physics, electrical engineering, manufacturing industry, gaming industry.
CO3	The concept of Complex Number is used in the field of Computer Science. It is also used in coding and programming.
CO4	Here students are getting the knowledge of Graphs, continuity, and differentiation by which they will be able to find areas of any surface.
CO5	By getting full knowledge of Tangent and normal students will be able to use it in daily lives and further studies in Architecture Engineering, Civil Engineering etc.

Unit	Title of the Unit			Mapped
No.			Hrs.	CO
1	i) Series ii) Binomial Theorem	Series: Arithmetical Progression: n th term of AP, Sum of 'n' terms, Arithmetic Mean. Geometrical Progression: n th term of GP, Sum of 'n' terms& infinite terms, Geometric Mean.	08	1
		Binomial theorem: Definition of factorial notation, permutation and combination, Binomial theorem for positive index, negative and fractional index (without proof), Application of Binomial theorem. Determinants: Definition, expansion and elementary properties of determinant of order 2 and 3. Solution of system of linear equations, Consistency of equations, Cramer's rules.		
2	i) Trigonom etry ii) Vector Algebra	Trigonometry: Relation between sides and angles of triangles: Simple cases only. Vector Algebra: Dot and Cross product, Scalar and vector triple product.	07	2
3	i) Complex Number	Complex Number: Definition of imaginary number, complex number & its conjugate. Algebra of complex number (equality, addition, subtraction, multiplication and division). Geometrical representation of a complex number, modulus and amplitude. Polar form of a complex number, Square root of a complex number. De Moivre's theorem (without proof)&	08	3
4	i) Differential Calculus-I	its application. Differential Calculus - I Functions, limits, continuity: Definitions of variable, constant, intervals (open, closed, semi-open). Definition of function, elementary methods of finding limits (right and left), elementary test for continuity and differentiability. Methods of finding derivative: Fundamental rules of derivatives (Sum and Difference), Derivatives of special functions, Trigonometric functions, exponential function, Function of a function.	09	4
5	i) Differential Calculus-II	Differential Calculus - II Differentiation: Logarithmic differentiation, Function with respect to another function, Function power function, Higher order derivatives. Application - Finding Tangents, Normal. Maxima/Minima.	08	5

References Books:

- 1. Applied Mathematics: Kailash Sinha, Meerut publication.
- 2. Applied Mathematics: P. K. Gupta, Asian Publication.
- 3. Applied Mathematics: H. R. Loothara, Bharat Bharti Publication.
- 4. Mathematics for Polytechnic: S.P. Deshpande, Pune Vidyarthi Griha.

e-Learning Source:

https://www.youtube.com/watch?v=syLIPtxjN0E&list=PLn78sdsv0QoXBxWmyGp5SQdg-F AlyB05&pp=iAQB

https://www.youtube.com/watch?v=rBNQ0r7CN2c&list=PLn78sdsv0QoXUdre4aCAobj3cxACkNeLL&pp=iAQB

PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
CO											
CO1	3	1	3		1			2	-	1	1
CO2	1	3	1	1	2			2	1	2	-
CO3		1	2	2	3			3	2	2	1
CO4	2	2	2	1				-	2	1	3
CO5	2	1	2	3	1			_	1	_	2

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation										
Name & Sign of Program Coordinator	Sign & Seal of HoD									

APPLIED PHYSICS-(A)

(DPH-101)

[COMMON TO ALL DIPLOMA ENGINEERING COURSES]

LTP

310

UNIT-1

Measurement:

Units and Dimensions [6]

Fundamental and derived units:

- S.I. Units and Dimensions of physical quantities, Dimensional formula and dimensional equation, Principal of homogeneity and application of homogeneity principle to:
- (i) Checking the correctness of physical equations
- (ii) Deriving relations among various physical quantitions,
- (iii) Conversion of numerical values of physical quantities form one system of units into another, Limitations of dimensional analysis, Errors in measurement, accuracy and precision, random and systematic errors, estimation of probable errors in the result of measurement (combination of errors in addition, subtraction, multiplication and power). Significant figures and order of accuracy in respect to instruments.

Vector:

Scaler and vector quantities; Addition, Subtraction, Resolution of vector; Cartesian components of vector, Scaler and vector product of vectors.

UNIT-II [10]

Force and Motions:

Newton's Law of Motion, Circular motion, angular velocity, angular acceleration and centripetal acceleration. Relationship between linear velocity and angular velocity, Relationship between linear acceleration and angular acceleration.

Fluid mechanics and fiction:

Surface tension, capillaries, equation of continuity, Bernoulli's theorem, stream line and turbulent flow, Reynold's number. Physical significance of friction, Advantage and disadvantage of friction and its role in every day life, Static and dynamic frictional forces, Coefficients of static and dynamic frictions and their measurement, Viscosity, Coefficients of viscosity and its determination by Stoke's method.

Work, Power and Energy:

Work done by force on bodies moving on horizontal and inclined planes in presence of frictional forces, Concept of power and its units, Calculation of power(simple cases). Concept of kinetic

and potential energy, various forms of energy, conservation of energy, Force constant of spring, Potential energy of stretched spring.

Unit-III [8]

Elasticity:

Elasticity, Stress and Strain, Hooke's law, Elastic limit, Yielding point and breaking point, Modulus of elasticity, Young's modulus, Bulk modulus and modulus of rigidity, Poisson ratio, Resilience.

Simple Harmonic Motion, Peridic Motion, Characteristics of Simple Harmonic Motion, Equation of Simple Harmonic Motion and determination of Velocity and acceleration, Graphical representation, Spring Mass system, Simple pendulum, Derivation of their periodic time, Energy conservation in Simple Harmonic Motion, Definition of free, Forced, undamped and damped vibrations, Resonance and its sharpness, Q-factor.

Unit-IV [8]

Gas laws and specific heats of gases:

Boyle's law, Charle's law, Gay Lussac's law, Absolute temperature, Kelvin scale of temperature, General gas equation(without derivation), Molar or universal gas constant, Universal gas equation, Standard or normal temperature and pressure (N.T.P), Specific heat of gases, Relation between two specific heat, Thermodynamics variables, first law of thermodynamics(statement and equation only), Isothermal, Isobaric, Isochoric and adiabatic processes (Difference among these processes and equation of state).

Unit-V [8]

Heat transfer and radiation:

Modes of heat transfer, Coefficient of thermal conductivity and its determination by

- (i) Searle's Method for good conductors.
- (ii) Lee's Method for poor conductors.

Conduction of heat through compound media, Conduction and convection, Radial flow of heat, Blackbody radiation, Stefan's law, Wein's displacement and Rayleigh- Jeans laws, Planck's law.

References:

- 1. Nootan Physics: Kumar & Mittal
- 2. Applied Physics: P.K. Gupta.
- 3. Pradeep Fundamental: Gogia & Gomber.
- 4. Applied Physics: P.S. Kushwaha.

DCH-101		A	Applied Ch	emistry (A)	
Pre-	Co-Requisite	L	Ť	P	C
requisite		0.2			
None	None	03	01	00 1.1 · A 1· A·	
Objective UNIT I	Atomic Structu			nd their Application	ns in Engineering 08
Basic concept of	of atomic structur	e, Matter wave	concept, Q	uantum number, H	eisenberg's
uncertainty prin	nciple, Shapes of	orbitals.			
Modern classif	ication of elemen	ts (s, p, d, and f	block elem	ents), periodic pro	perties:
ionization poter	ntial, electro nega	ativity, electron	affinity.		
UNIT II	Chemical Bond	ing:			07
Overview of ba	sic concept of Io	nic, Covalent &	Co-ordina	e bonds, Hydroger	n bonding,
Valence bond t	heory, Hybridiza	tion, VSEPR the	eory, Mole	cular orbital theory	
UNIT III	Electrochemist	ry-I and Electr	ochemistr	y-II:	08
Arrhenius theo	ry of electrolytic	dissociation, Tr	ansport nu	mber, Electrolytic	conductance,
Ostwald dilutic	on law. Concept of	of acid and base	es: Arrheni	us, Bronsted and I	Lewis theory.
Concept of pH	and numericals.	Buffer solution	s, Indicator	s, Solubility produ	ict, Common
ion effect with	their application.				
Redox reaction	s, electrode pote	ential (Nernst e	quation), I	Electro-chemical co	ell (Galvanic
and Electrolyti	c). EMF of a ce	ell and free ene	rgy change	e. Standard electro	de potential,
Electrochemica	l series and its	application. (Chemical a	nd electrochemica	al theory of
corrosion, Galv	renic Series. Prev	ention of corros	ion by vari	ous methods.	
UNIT IV	Chemical Kine	tics, Catalysis a	and Solid S	tate:	09
Introduction, L	aw of mass action	on, order and \overline{m}	olecularity	of reaction. Activa	ation energy,
rate constants,	lst order reaction	s and 2nd order	reactions.		
Definition, Ch	naracteristics of	catalytic reac	tions, Cata	alytic promoters	and poison,
autocatalysis ar	nd negative cataly	vsis. Theory of o	catalysis an	d applications.	
Types of solids	s (Amorphous an	d Crystalline),	classificati	on (Molecular, Ior	nic, Covalent
1 M - 4 - 11! - \	Rand theory of s	olids (Conducto	ors. Semico	1 4 1 1 1	lators) types
and Metaine),	Dana meory or s	01145 (0011440	,	nauctors and insu	iators), types

UNIT V	Water Treatment:	08			
Hardness of water, its limits and determination of hardness of water by EDTA method. Softening methods (Only Soda lime, Zeolite and Ion exchange resin process). Disadvantages of hard water in different industries, scale and sludge formation, corrosion, caustic embrittlement, priming and foaming in boilers. Disinfection of Water by chloramine-T, Ozone and chlorine. Advantages and disadvantages of chlorination. Industrial waste and sewage, Municipality waste water treatment, Definition of BOD and COD. Numerical problems based on topics.					
Reference books:	 Applied Chemistry: R. S. Katiyar and J. P. Chaudhary Applied Chemistry: Rakesh Kapoor Principles of general and inorganic chemistry: O. P. Tandon Engineering Chemistry: S. Chandra Applied Chemistry: M. Gupta 				

BUILDING MATERIALS-(A) (DCE-101)

L T P 3 1 0

UNIT-I

Building Stones:

Classification of rocks: Geological and physical classification; Common rock forming minerals; Testing of stones for specific gravity, water absorption, durability, weathering, hardness by Mohr's scale, identification of rocks.

7

UNIT-II

Quarrying:Terminology used in quarrying;basic principles involved, methods of quarrying. Blasting:where used, principles of blasting, line of least resistance, drilling of holes (manually and mechanically), charging, tamping,firing,fuses and detonators,safety precautions,common explosives only names, their uses and storage.

Wedging: Where used, tools required and operation of wedging.

Stone crushing: Process & equipment used, crushers, grinding mills like hammer mill, ball mill & screens. Availability, characteristics and uses of the following stones: Granite, sandstone, limestone, dolomite, slate, basalt, trap, quartzite and marble, Availability of different stones in state. 10

UNIT-III

Bricks and Clay Products:

Brick: Raw materials for brick manufacture, properties of good brickmaking earth, field testing of brick clay. Manufacture of bricks:Preparation of clay-manually/mechanically.

Moulding: Hand moulding and machine moulding, Drying of bricks, Burning of bricks.

Clamps: Types of kilns, details of Bull's trench kiln and Hoffman's Kiln, process of burning, size of standard bricks. IS Classification of bricks as per IS: 1077 and testing of common building bricks as per IS: 3495 recommendations. Compressive strength,water absorption, efflorescence test;

Refractory bricks: Composition, properties and uses.

Building tiles: Types wall, ceiling, roofing and flooring tiles, their properties, and uses.

Other clay products: Earthenware and stoneware, their properties and uses.

UNIT-IV

Lime:

Natural sources of lime. Defintions of quick lime, fat lime, hydraulic lime, hydrated lime, lump lime, calcination, slaking, manufacture of lime.

Process of setting and hardening action of lime. Field tests of lime as per IS 1624. Pozzolonic materials. Types, properties and uses.

UNIT-V

Cement:

Natural and artificial cement,raw materials, manufacture of ordinary portland cement, flow diagrams for dry and wet process. setting and hardening of cement, types of cement, properties of cement, tests of cement as per IS.

7

References:

- 1. Building Construction : Jha J & Sinha, S .K.
- 2. A Text Book of Building Construction : Arora , S.P . & Bindra, S.P.
- 3. A Text Book of Engineering Materials: Kulkarni C.J.

ENGINEERING DRAWING (DED -101)

LTP

3 1 0

UNIT-I

Drawing, instruments and their uses:

Introduction to various drawing, instruments.Correct use and care of Instruments.Sizes of drawing sheets and their layouts.

Lettering Techniques

1 Sheet

Printing of vertical and inclined, normal single stroke capital letters. Printing of vertical and inclined normal single stroke numbers.

Stencils and their use.

Introduction to Scales:

1 Sheet

Necessity and use, R F

Types of scales used in general engineering drawing.

Plane, diagonal and chord scales.

UNIT-II

Conventional Presentation:

1 Sheet

Thread (Internal and External), Welded joint, Types of lines, Conventional representation of materials, Conventional representation of machine parts.

Principles of Projection:

Orthographic, Pictorial and perspective. Concept of horizontal and vertical planes. Difference between I and III angle projections.

Dimensioning Techniques:

Projections of points, lines and planes.

2 Sheet

Orthographic Projections of Simple Geometrical Solids

Edge and axis making given angles with the reference planes. Face making given angles with reference planes. Face and its edge making given angles withreference planes. Orthographic views of simple composite solids from their isometric views. Exercises on missing surfaces and views.

UNIT-III

Section of Solids:

1 Sheet

Concept of sectioning Cases involving cutting plane parallel to one of the reference planes and prependicular to the others. Cases involving cutting plane perpendicular to one of the reference planes and inclind to the others plane, true shape of the section

Isometric Projection:

1 Sheet

Isometric scale

Isometric	projection	of solids
isometric	projection	or somus.

UNIT-IV

Free hand sketching: 1 Sheet

Use of squared paper

Orthographic views of simple solids Isometric views of simple job like carpentary joints

Development of Surfaces:

1 Sheet

Parallel line and radial line methods of developments.

Development of simple and truncated surfaces (Cube, prism, cylinder, cone and pyramid).

UNIT-V

Assembly and Disassembly Drawings: 2 Sheet

Plummer block

Footstep bearings

Couplings etc.

Rivetted & Welded Joints

Screw and form of screw thread

Orthographic Projection of Machine Parts:

1 Sheet

Nut and Bolt, Locking device, Wall bracket

Practice on AUTO CAD:

To draw geometrical figures using line, circle, arc, polygon, ellipse, rectangle - erase and other editing commonds and osnap commands (two dimensional drawing only) (Printouts of figures)

References:

- 1. Engineering Drawing: ND Bhatt
- 2. Engineering Drawing: R.K. Dhawan
- 3. Engineering Drawing: B.K.Goel.

UNIT-1

Introduction:

Effective from Session: 2024-25										
Course Code	DAM-101	Title of the Course	APPLIED MECHANICS-I	L	T	P	C			
Year	I	Semester	I	3	1	0				
Pre-Requisite	None	Co-requisite	None							
Course Objectives	1. The subject Applied Mechanics deals with basic concepts of mechanics like laws of forces, laws of									

	Course Outcomes							
CO1	The students will be able to Interpret various types of units and their conversion from one to another.							
CO2	Analyze different types of forces acting on a body and draw free body diagrams.							
CO3	Determine the resultant of coplanar concurrent forces and basic concepts of beam.							
CO4	To understand basic concept of moment and its application.							
CO5	Determine the resultant of forces by moment and understand equilibrium conditions of bodies.							

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
I	Introduction	Introduction Concept of engineering mechanics, definition of mechanics, statics, dynamics, application of engineering mechanics in practical fields. Definition of Applied Mechanics. Definition, basic quantities and derived quantities of basic units and derived units. Different systems of units (FPS, CGS, MKS and SI) and their conversion from one to another for density, force, pressure, work, power, velocity, acceleration ,Concept of rigid body, scalar and vector quantities	8	CO1
II	Forces	Forces Definition of force, measurement of force in SI units, its representation, types of force: Point force/concentrated force & Uniformly distributed force, effects of force, characteristics of a force. Different force systems (coplanar and non-coplanar), principle of transmissibility of forces, law of superposition. Composition and resolution of coplanar concurrent forces, resultant force, method of composition of forces, [Simple problems]	8	CO2
III	Laws of forces & Beams	Laws of forces laws of forces, triangle law of forces, polygon law of forces - graphically, analytically, resolution of forces, resolving a force into two rectangular components Free body diagram Equilibrant force and its determination Lami's theorem (concept only) Beams Type of Load, supports, Beams- definition, types and analysis for simply supported, cantilever beams [Simple problems on above topics]	8	CO3
IV	Moment	Moment Concept of moment. Moment of a force and units of moment. Varignon's theorem (definition only). Principle of moment and its applications (Levers – simple and compound, steel yard, safety valve, reaction at support). Parallel forces (like and unlike parallel force), calculating their resultant	10	CO4

V	Couple	Couple Concept of couple, its properties and effects. General conditions of equilibrium of bodies under coplanar forces. Position of resultant force by moment [Simple problems on the above topics]	6	CO5
---	--------	--	---	-----

References Books:

- 1. Applied Mechanics & Strength of Material: R.S. Khurmi, S.Chand Publication
- 2. Applied Mechanics : Hemendra Dutt Gupta, Navbharat Publication

e-Learning Source:

https://www.youtube.com/watch?v=nGfVTNfNwnk

https://www.youtube.com/watch?v=TnWBAnkCDuc&list=PLq7jO-L k0yUk2tfPwhea9asGRBXcUEpL

PO-PSO								PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	POIU	POH	PO12	1501	1502	1505	1504	1505
CO1	2	2	1	3	-	1	-	-	-	1	1	-	1	2	-	2	-
CO2	1	1	-	2	-	-	-	-	-	-	-	-	2	2	-	2	-
CO3	1	1	-	2	-	-	-	-	-	-	-	-	2	2	-	2	-
CO4	-	1	1	3	-	-	-	-	-	-	-	-	1	3	-	3	-
CO5	-	1	1	3	-	-	-	-	-	-	-	-	1	3	-	3	-

1-Low Correlation; 2- Moderate Correlation; 3 Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD

DCH-151/251	Applied Chemistry Lab										
Pre-requisite None	Co-Requisite None	L 00	T 00	P 02	C						
Objective	To develop the practical knowledge for qualitative analysis of salts determination of hardness, chloride contents, dissolved oxygen in w										
	ANY TEN EXPERIMENTS										
	To analyze inorganic mixture for two acid and basic radicals from following radicals										
	A. Basic Radicals :										
	NH ₄ ⁺ , Pb ⁺⁺ , Cu ⁺⁺ , Bi ⁺⁺⁺ , Cd ⁺⁺ , As ⁺⁺⁺ , Sb ⁺⁺⁺ ,										
Even a view a w 4 1 5	Sn ⁺⁺ , Al ⁺⁺⁺ , Fe ⁺⁺⁺ , Cr ⁺⁺⁺ , Mn ⁺⁺ , Zn ⁺⁺ , Co ⁺⁺ Ni ⁺⁺ , Ba ⁺⁺ , Sr ⁺⁺ , Ca ⁺⁺ , Mg ⁺⁺										
Experiment 1-5											
	B. Acid Radicals : CO ₃ , S, SO ₃ , CH ₃ COO-, NO ₂ -, NO ₃ -, Cl-, Br-, I-, SO ₄										
	To determine the total hardness of water sample in terms of CaCO ₃ by										
Experiment 6	EDTA titration method using E Br indicator.										
Experiment 7	Determination of temporary hardness of water sample by O-hener's method.										
Experiment 8	To determine the Chloride content in supplied water sample by using Mohr's methods.										
Experiment 9	Determination of Dissolved oxygen (DO) in given water sample.										
Experiment 10	To determine the strength of given HCl solution by NaOH solution using pH meter										
Experiment 11	To determine the percentage of available Chlorine in the supplied sample of Bleaching powder.										

APPLIED MECHANICS LAB (DAM-151)

L T P 0 0 2

- 1. To verify the law of Polygon of forces.
- 2. To verify the law of parallelogram and triangle of forces.
- 3. To verify the law of principle of moments.
- 4. To find the coefficient of friction between wood, steel, copper and glass.
- 5. To find the reaction at supports of a simply supported beam carrying point loads only.
- 6. To find the forces in the jib & tie of a jib crane
- 7. To find the forces in the members of a loaded roof truss. (King / Queen post truss)
- 8. To find the mechanical advantage, velocity ratio and efficiency of any three of the following machines:
 - (i) Simple wheel & axle
 - (ii) Differential wheel & axle
 - (iii) Differential pulley block
 - (iv) Simple Screw jack
 - (v) Simple Worm & worm wheel
 - (vi) System of Pulleys (any type).

BUILDING MATERIAL LAB (DCE-151)

L T P 0 0 2

- 1. Identification of different types of stones and aggregates (visual identification).
- 2. Identification of timbers: teak, sal, chir, shisum, siras, deodar, kail and mango. (visual identification)
- 3. To conduct field tests of cement.
- 4. To determine normal consistency of cement.
- 5. To determine setting time (initial and final) of cement.
- 6. To determine fineness of given sample of cement.
- 7. To determine compressive strength of bricks.
- 8. To determine water absorption of bricks
- 9. To determine soundness of cement.
- 10. To identify hydraulic & fat lime.

Computer Application Lab

(DCS-151)

L T P 1 0 2

- 1. Introduction of computer types, generation, Application, characteristic & Memory.
- 2. Introduction and practice of Ms-Office package (Ms-Word, Ms- Excel, and Ms- Power point & Ms-Access).
- 3. Introduction & Practice of Internet and e-mail.
- 4. Programming of 'C' history of character set, variables, keywords, token data types input and output function.
- 5. Introduction of Decision control statement- if, if- else, nester if statement and switch case.
- 6. Programming practice of if, if else, nested if statement and switch case.
- 7. Loops- while loop, do- while loop, for loop, break and continuous statements.
- 8. Programming practice of while loop, do- while loop, for loop, break and continuous statements.
- 9. Array Declaration, initialization of one and two dimensional array.
- 10. Programming practice on array.

Reference:

1. Computer fundamental- Sinha & Sinha

2. Computer Basics & 'C'- V. Rajaraman

3. Office 2007 - Ruthosky, Seguim, Ruthosky

4. Programming in ANSI- E Balagurusamy